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On the Probabilities of Identity States in Permutable Populations
C. Cannings
School of Mathematics and Statistics, University of Sheffield, Sheffield, United Kingdom

Summary

Génin and Clerget-Darpoux recently discussed the der-
ivation of the probabilities of identity states for popu-
lations in which there was some degree of kinship, pri-
marily to allow the extension of the classical
affected-sib-pair method to such populations. It is ar-
gued here that their derivation makes certain assump-
tions that are valid only for some very restricted pop-
ulation models and that are not needed for an
appropriate treatment. Here the probabilities of the iden-
tity states of two individuals with a given genealogical
relationship are specified in terms of the kinship para-
meters of the underlying population, from which the
founders of the individuals’ genealogy have been ran-
domly selected. It is argued that an appropriate repre-
sentation for a permutable population, one in which
gene identity does not depend on the pattern of genes
across individuals, requires three parameters. This rep-
resentation is related to that of Génin and Clerget-Dar-
poux and to that of Weir.

Introduction

In a recent paper, Génin and Clerget-Darpoux (1996)
have sought to extend the sib-pair method of linkage
analysis to the case in which the underlying population
is consanguineous. In doing so, they require specification
of the probabilities of the nine possible identity states
(S1, . . . , S9 in their notation—which I have adopted,
albeit with some reordering) of two individuals drawn
at random from the population. It is argued here that
Génin and Clerget-Darpoux’s set of probabilities are in-
correct, in the sense that they do not correspond to any
fully specified population model (except in certain very
restricted and uninteresting cases). Additionally, it is
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demonstrated how one can derive, in a compact way,
the probabilities of the gene-identity states for any pair
of individuals and, in particular, for a sib pair whose
parents have some specific relationship within a gene-
alogy whose founders are drawn from a population with
nonzero kinship. Earlier, Bishop and Williamson (1990)
had extended the affected-sib-pair method to more-dis-
tant relationships, using Cotterman’s (1940) k coeffi-
cients, but here we require the full identity states.

Permutable Populations

A first point, although not the main one, of this article
concerns the assumption made by Génin and Clerget-
Darpoux—that, if a population is stable in the sense that
the genetic structure does not change, then the coefficient
of inbreeding, denoted by “a,” is equal to the coefficient
of kinship, denoted by “f.” This is not the case in gen-
eral. For example, suppose that a population of infinite
size has genetic makeup (here the1 2 1AA � AB � BB6 3 6

letters denote alleles that are identical by descent), with
the mating rule that each AA mates with a BB and that
each AB mates with an AB. In the absence of fertility
or viability differences, this population is stable, with

, whereas the coefficient of kinship is . On1 1a � f �3 4

the other hand, if an infinite population mates at ran-
dom, then it will be in Hardy-Weinberg equilibrium with
respect to the frequency of alleles identical by descent,
and . It might seem paradoxical to assert that aa � f

population in Hardy-Weinberg equilibrium has any in-
breeding at all, but, if such a population (or an ap-
proximation of it) is created from a founder population
that then expands rapidly, it makes sense to identify in
that final population the distinct founder genes and to
calculate appropriate kinship coefficients.

In a finite population, stability of coefficients of in-
breeding and kinship, other than unity at fixation, will
be achieved if there is mutation that introduces new
“founder” genes. The infinite-alleles model is such a
model: mutation occurs at a rate, m, that is independent
of the “target” gene, each new mutant is considered as
a new founder gene, and any identity by descent requires
that ancestry be traced back only to such an ancestral
mutant. Weir (1994) discusses this model and gives the
stationary coefficients of kinship for as many as four
genes—that is, the state reached by such a population
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Table 1

Probabilities of Identity States under the Génin and Clerget-Darpoux Model and
under the Permutable Model

LABEL

IDENTITY

STATE

PROBABILITY

DESIGNATION

PROBABILITY OF IDENTITY STATE

Génin and
Clerget-
Darpoux
Model Permutable Model

S1 (1,1,1,1) p1 a3 a2b

S2 (1,1,2,2) p2 a2(1 � a) a2(1 � b)
S3 (1,2,1,2) p3 a2 2(1 � a) 2a2(1 � b)
S4 (1,1,1,2) p4 a2(1 � a) a(1 � a)g
S5 (1,2,2,2) p5 a2(1 � a) a(1 � a)g
S6 (1,1,2,3) p6 a 2(1 � a) a(1 � a)(1 � g)
S7 (1,2,3,3) p7 a 2(1 � a) a(1 � a)(1 � g)
S8 (1,2,1,3) p8 2a 3(1 � a) 4a(1 � a)(1 � g)
S9 (1,2,3,4) p9

4(1 � a) 2 21 � 6a � 3a � 4a(1 � a)g � 2a b

after a long time. However, it is not true that, at equi-
librium, in a diploid population. In fact,a � f

, since the two genes at a locus within a2a � (1 � m) f

diploid individual are identical by descent only if those
of the two randomly selected parents are identical and
neither mutates during transmission. This fact is not
noted by Weir, since he uses the haploid version of the
model, in which there is no meaning to a. Of course,
there is approximate equality if m is small, as is usually
the case.

Thus it is not true that in general, and to assumea � f

so is to make some statement about the structure of the
population. I have argued above that, for certain infinite-
population models and, approximately, in some finite-
population models, the assumption is reasonable. It is
this class of models that I discuss here, since these accord
with Génin and Clerget-Darpoux’s assumptions. I con-
sider a class that I term “permutable” and make the
assumption that, if a set of genes is selected from the
population and the probabilities of the various possible
identity states are calculated, then these probabilities will
not be dependent on how the genes were drawn with
respect to diploid individuals; for example, for four
genes, it is not important whether they were drawn from
two, three, or four individuals.

The Probabilities of Identity States

I turn now to the derivation of probabilities of identity
states of a random pair of individuals in a permutable
population. Table 1 specifies the set of identity states,
their labeling (the Si), and the notation for their prob-
abilities (pi). Génin and Clerget-Darpoux (1996, Ap-
pendix A) do not give a derivation of their probabilities
but would appear to have used a conditional argument,
first taking the appropriate probabilities for the identity
within individuals and then, conditional on these states,

calculating the probability of the between-individual
states. Thus, to calculate the probability of S �1

, one has a probability a2 that the individuals(1, 1, 1, 1)
have the correct within-individual identity (thus restrict-
ing them to or ) and thenS � (1, 1, 1, 1) S � (1, 1, 2, 2)1 2

has the probability of , where b is the proba-2S � a b1

bility that the individuals are in state S1, given that both
of the individuals are inbred. Génin and Clerget-Dar-
poux give a final probability of a3 for S1, thus requiring
that . In general, there is no reason to assume thatb � a

. Furthermore, we have, summing appropriatelyb � a

over identity states, , whereasa � (p � p � p � p )1 2 4 6

1 1
f � p � (p � p � p ) � p � a .1 3 4 5 82 4

Génin and Clerget-Darpoux’s expressions for the p’s sat-
isfy the first expression but not the second. There are
other restrictions on the pi ( , , ,Sp � 1 p � p p � pi i 4 5 6 7

and ), which are satisfied by the Génin and2p � p � a1 2

Clerget-Darpoux’s expressions. On the other hand, per-
mutability implies that and that ,p � 2p p � 4p3 2 8 6

which are not true for Génin and Clerget-Darpoux’s
expressions. These equalities follow from consideration
of the arrangement of the four alleles among the pairs
of individuals. Thus, if the four alleles are two 1’s, one
2, and one 3, then the probability that the two 1’s are
assigned to the first individual, giving S6, is , whereas1

6

the probability that they are assigned one to each in-
dividual, giving S8, is (hence, ).2 p � 4p8 63

These restrictions reduce the df for the case of four
alleles, to 3. One possible parameterization is to use a

and b, as defined above, and (S4Findividual 1 in-g � P
bred ∩ individual 2 not inbred). It is then easy to obtain
the expressions given in the final column of table 1. It
should be noted that Génin and Clerget-Darpoux used

. It is difficult to think of conditions under whichb � a
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Table 2

Identity States: Probabilities for Two and Three Genes

Label Identity State
Probability
Designation

Probability un-
der Permutable

Model

T1 (1,1) r1 a2

T2 (1,2) r2 (1 � a )2

U1 (1,1,1) t1 a3

U2 (1,1,2) t2 (a � a )2 3

U3 (1,2,1) t3 (a � a )2 3

U4 (2,1,1) t4 (a � a )2 3

U5 (1,2,3) t5 (1 � 3a � 2a )2 3

Table 3

Identity States: Probabilities for Four Genes

Label
Identity

State
Probability
Designation

Probability under
Permutable Model

S1 (1,1,1,1) p1 a4

S2 (1,1,2,2) p2
2(a � a )2 4

S3 (1,2,1,2) p3
22(a � a )2 4

S4 (1,1,1,2) p4 2(a � a )3 4

S5 (1,2,2,2) p5 2(a � a )3 4

S6 (1,1,2,3) p6 a (1 � a ) � 2(a � a )2 2 3 4

S7 (1,2,3,3) p7 a (1 � a ) � 2(a � a )2 2 3 4

S8 (1,2,1,3) p8 4[a (1 � a ) � 2(a � a )]2 2 3 4

S9 (1,2,3,4) p9
21 � 6a � 8a � 6a � 3a4 3 2 2

this could reasonably be expected to hold. For example,
if one has an infinite, random-mating population with
alleles A1,A2, ) (in terms of identity—i.e., with reference
back to the founders), having frequencies pi, where

, then we have and . Note2 2 4� p � 1 a � � p ba � � pi i i

that all sums are over unequal indices. It can be proved
(see the Appendix, below) that , with equalityb x a

if—and only if—in each case . This latter condition1p �i n

implies that . It should be noted that there areg � 2a

difficulties with each of the other p’s in Génin and Cler-
get-Darpoux’s model. This can easily be seen, since, if
there were only two alleles (with respect to identity),
then , which is not possible inp � p � p � p � 06 7 8 9

Génin and Clerget-Darpoux’s model; nor can inp � 09

their model when there are only three alleles (with re-
spect to identity).

An Alternate Parameterization

The expressions discussed above for the probabilities
of the various identity states are particularly appropriate
to the discussion of the Génin and Clerget-Darpoux for-
mulas, since these latter appear to have been derived by
a conditioning argument. However, a more natural par-
ameterization for this model is to use a set of (ia � Pi

randomly selected genes are identical by descent). This
is the approach adopted by Weir (1994), although he

also requires an additional parameter (his “D”) in deal-
ing with four genes, since he does not assume a per-
mutable population, and so must consider two pairs of
genes as distinct from four genes. We can now express,
in a straightforward manner, the probability of identity
states involving two, three, and four genes, exploiting
the invariance under permutations. For example, for
three genes and with the notation defined in table 2, we
see, on examining the first two genes of the triplet,
that the probability that they are identical by descent is

, so that , implying thata � a t � t � a2 1 2 2

. Table 3 gives similarly derived expressionst � a � a2 2 3

for four genes.

Deriving Sib-Pair Probabilities

Having derived the vector for a pairp � (p , ) , p )1 9

of individuals randomly selected from a permutable pop-
ulation, we can obtain the vector p appropriate for a
pair of sibs whose parents are such a randomly selected
pair, using the standard formula wherep � p M,sibs parents

16 0 0 0 0 0 0 0 0
0 0 16 0 0 0 0 0 0
2 2 4 4 4 0 0 0 0
4 0 4 4 4 0 0 0 0

16M � 4 0 4 4 4 0 0 0 0 .
0 0 8 0 0 0 0 8 0
0 0 8 0 0 0 0 8 0[ ]1 0 3 2 2 1 1 6 0
0 0 4 0 0 0 0 8 4

Direct Probabilities from Any p

As an alternative to deriving psibs from pparents, we can
proceed directly from , where the asterisk (*) indi-∗psibs

cates that the expressions take into account kinship only
within the observed genealogy and that they do not take
into consideration the possible kinship of the founders
of that genealogy, using the theory developed earlier for
two, three, and four genes. Moreover, we can allow any
relationship between the parents to be incorporated, so
that sib-pair analysis for families with parents who are
first cousins, for example, can easily be performed. In
fact, for any pair of individuals with the cal-∗pindividuals

culated for them back to their founders within their de-
fining genealogy, we can readily find pindividuals, provided
that the population is of the permutable kind.

I have , where∗p � p Windividuals individuals
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1 0 0 0 0 0 0 0 0
( )a 1 � a 0 0 0 0 0 0 02 2

( )a 0 1 � a 0 0 0 0 0 02 2

( )a 0 0 1 � a 0 0 0 0 02 2

( )W � a 0 0 0 1 � a 0 0 0 02 2

( ) ( )a a � a 0 2 a � a 0 [1] 0 0 03 2 3 2 3

( )a a � a 0 0 2(a � a ) 0 [1] 0 03 2 3 2 3[ ]( )a 0 a � a (a � a ) (a � a ) 0 0 [1] 03 2 3 2 3 2 3
2a 2(a � a ) 2(a � a ) 2(a � a ) 2(a � a ) [2] [2] 4[2] [3]4 2 3 2 4 3 4 3 4

with ,[1] � (1 � 3a � 2a ) [2] � a (1 � a ) � 2(a �2 3 2 2 3

, and .2a ) [3] � 1 � 6a � 8a � 6a a � 3a4 4 3 2

The derivation of W is fairly straightforward from
tables 2 and 3. For example, consider the fourth column
of W—q4, say. equals the fourth element of∗p qindividuals 4

pindividuals—that is, the probability of state S4, or (1,1,1,2).
We work through the states for the individuals, imposing
the additional kinship of the population. Thus we see
that, when population kinship is incorporated, (1,1,1,2)
can only arise from the states (1,1,1,2), (1,1,2,3),
(1,2,1,3), or (1,2,3,4) in the pair of individuals. If the
pair have identity state (1,1,1,2) within their genealogy,
then we require that the two alleles 1 and 2 remain
distinct, which, on the basis of the data in table 2, has
probability . In a similar manner, if their within-(1 � a )2

genealogy state is (1,1,2,3), then we require that the
three distinct alleles 1, 2, and 3 are, in fact, in state
(1,1,2) or state (1,2,1) with respect to the population,
which has probability . For (1,2,1,3), the al-2(a � a )2 3

leles must be in state (1,1,2), with probability
, and, finally, (1,2,3,4) must be precisely(a � a )2 3

(1,1,1,2), with probability .2(a � a )3 4

Thus we can easily derive the appropriate expressions
for any sib pair whose parents have a specific relation-
ship in a permutable population with known values of
a2, a3, and a4 . For example, for sibs with unrelated
parents, ; for sibs∗p � (0, 0, 1, 0, 0, 0, 0, 2, 1)/4sibs

whose parents are first cousins, ∗p �sofc

; and, for sibs whose(1, 0, 15, 2, 2, 1, 1, 30, 12)/64
parents are double first cousins, ∗p �sodfc

. These expressions are(4, 1, 29, 8, 8, 3, 3, 54, 18)/128
most easily derived by use of the earlier formula,

, which is equally valid for and∗p � p M psibs parents sibs

. For these particular relationships, p comes di-∗pparents

rectly from the k coefficients ( , ,p � k p � k p �3 2 8 1 9

, and all other ). The k coefficients are, respec-k p � 00 i

tively, (1,0,0), ( , ,0), and ( , , ). Of course, one can3 1 9 6 1
4 4 16 16 16

proceed directly from the , which are commonly∗pparents

given in the literature, in a single step, via the formula
, by combining the two matrix∗p � p MWindividuals parents

multiplications.

Discussion

It has been emphasized throughout the foregoing re-
marks that expressions for appropriate p vectors require
a carefully specified model of the population structure.
Here that specification is via a permutable population,
which is precise for a Hardy-Weinberg population and
is approximately true for a finite infinite-alleles model.
As usual, one needs to be careful to distinguish between
identity-by-descent and identity-by-state alleles. Here
reference is always to identity-by-descent alleles, so that,
even though reference is made to a Hardy-Weinberg pop-
ulation, it is supposed that this has arisen from a finite
population at some stage in the past and so alleles can
be identified with founder genes. Thus, in this case, the
coefficients of identity, which are usually regarded as
zero in a Hardy-Weinberg population, are nonzero and
measure real kinship.

In order to utilize the aforementioned formulas, one
needs good estimates of the various coefficients. This
issue has recently been discussed in some detail by Mor-
ton and Teague (1996). It is worth noting that one of
the assumptions of Génin and Clerget-Darpoux and of
the present article—that is, that the coefficients of in-
breeding and kinship are equal—is empirically sup-
ported by Morton’s work in a variety of populations
(see table 5.1 of Morton and Teague [1996], and ref-
erences therein).

Appendix

We have and . The sign of2 2 4a � (� p ) ba � � pi i

is the same as that of . Now,2 3b � a d � ba � a

4 2 3d � ( p ) � ( p )� �i i

2 4 2 3� ( p ) ( p ) � ( p ) , since p � 1� � � �i i i i

2 2 2� 2 p p (p � p) (p � p p � p )� i j i j i i j j

1 3 3 3� p p p (p � p � p � 3p p p )� i j k i j k i j k3
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after tedious but straightforward rearrangement,
where each S is over indices that are distinct; that is,

, , and . The first term of the final ex-i ( j i ( k j ( k
pression is greater than or equal to zero, with equality
only if pi is constant for all i or if for some i,p � 1i

since each component is nonnegative. The second term
is greater than or equal to zero, since, for three non-
negative quantities—x1, x2, and x3—we have 1 (x �13

(i.e., see Hardy et al. 1967), with3x � x ) x x x x�2 3 1 2 3

equality if, and only if, xi is constant. Taking x �i

, we have , and so the second term is3 3 3 3p (p � p � p )i 1 2 3

greater than or equal to zero, with equality if, and
only if, pi is constant or if, at most, two pi’s are non-
zero. Combining results and taking n to be the number
of alleles with nonzero frequency, we see that ,d x 0
and thus , with equality if, and only if, pi isb x a

constant for all i.
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